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Chapter 1

Lecture 1

1.1 Introduction to the Course on Matrix Calculus

1.1.1 Course Overview
Welcome to this IAP class on matrix calculus. I am Professor Alan Edelman, and the other
professor is Stephen Johnson. He will be delivering some of the lectures remotely due to out-
of-town commitments, utilizing Zoom technology.

Both of us are in the Math Department. I am also a part of CSAIL, where I run the Julia Lab.
My research focuses on both mathematics and computing software. Professor Johnson has a
background in matrix calculus through his work, primarily with PDE-constrained optimization,
and has also contributed to Julia programming.

1.1.2 Course Structure and Requirements
In this course, we have structured 16 hours of lectures. If any of you have taken 18.06, you
may find one of the hours familiar. We will be making use of a GitHub repository that contains
lectures and problem sets. The course assumes familiarity with basic linear algebra but does
not require prior knowledge of Julia. However, for those not familiar yet, the Julia used in this
class will be introductory and used mainly as a calculator.

1.2 Matrix Calculus in the Academic Sequence
At MIT, and in universities worldwide, calculus education begins with single-variable calculus
(18.01), covering the derivatives and integrals of single-variable functions. This is followed by
multivariable calculus (18.02), which introduces concepts of gradients and Jacobians.

It seems that the sequence of calculus education arbitrarily stops at vectors (1-dimensional).
Logically, it should extend to matrices (2-dimensional) and beyond to higher-dimensional arrays.
Programming languages often handle structures beyond vectors, and thus the ability to apply
calculus to matrices and higher-dimensional arrays becomes crucial.

As someone who has taught at MIT for nearly 30 years, I have seen linear algebra’s role
transform significantly. Once a topic to be avoided, it has now become essential due to the rise of
machine learning, statistics, and engineering applications. These fields require an understand-
ing of linear algebra and the ability to perform calculus on matrices and higher-dimensional
structures.

1.2.1 Relevance to Machine Learning
In machine learning, the necessity of taking gradients, especially of complex objects, is pivotal.
Techniques like gradient descent require this capability. Traditionally, I have integrated matrix

3



Source:
https://www.youtube.com/watch?v=0YqjeqLhDDElist=PLUl4u3cNGP62EaLLH92EV CN4izBKK6OE

calculus concepts, marrying calculus with linear algebra, to facilitate applications in modern
computational fields.

• Single-variable Calculus (18.01): Basics of derivatives and integrals.

• Multivariable Calculus (18.02): Gradients, Jacobians in vector spaces.

• Matrix Calculus: Extends concepts to 2D matrices and higher dimensions.

The incorporation of linear algebra into mainstream computational tools has enhanced the
relevance and importance of understanding matrix calculus, especially in the context of the
diverse applications present in machine learning and data science today.

purpose related to matrix calculus, whether it’s for machine learning, physics, engineering,
or any other field where advanced calculus concepts are crucial.

1.3 Introduction to Matrix Calculus

1.3.1 Overview and Objectives
Welcome to this IAP class on matrix calculus. I’m Professor Alan Edelman, and my colleague,
Professor Stephen Johnson, will be joining remotely for the initial sessions. Our plan is to
cover matrix calculus comprehensively over 16 hours of lectures, utilizing both our expertise in
mathematics and programming, notably with the Julia programming language, though prior
experience with Julia is not required.

This course builds on foundational knowledge in linear algebra. Its objective is to extend
calculus beyond single-variable and multivariable systems (such as scalar and vector calculus)
to matrix calculus, which is increasingly important given the rise of machine learning and data
science.

1.3.2 Background and Context
Matrix calculus can be viewed as a natural extension of the calculus sequence offered at most
universities, which starts with single-variable calculus (18.01 at MIT), progresses to multivari-
able calculus (18.02), and often omits further discussions into higher-dimensional structures like
matrices. The structure of this course is designed to bridge the gap from standard calculus to
matrix calculus, thereby addressing a crucial need in many scientific disciplines.

1.3.3 Why Matrix Calculus?
Over the past few decades, linear algebra has gained prominence due to its applicability in
modern technological fields such as machine learning and statistical analysis. Understanding
advanced calculus on matrices and higher-dimensional arrays is essential for complex appli-
cations, including but not limited to gradient descent and optimization in high-dimensional
spaces.

The concepts of gradient and Jacobian, typically covered in vector calculus (18.02), are
fundamental in understanding the calculus of matrices and higher structures. Many program-
ming languages, including Julia, readily support operations on multi-dimensional arrays, further
necessitating the understanding of matrix calculus.
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1.4 Key Questions in Matrix Calculus

1.4.1 Example Problems
Consider the function that squares a matrix. An immediate question is: What should the
derivative be? Unlike the scalar case where the derivative is simply 2x, the derivative for
matrices is not the same when x is not a scalar.

Other questions include the derivative of the matrix inverse, the matrix inverse squared, and
related operations. These operations reveal that matrix calculus involves complexities that are
not immediately predictable from scalar or vector calculus.

1.4.2 Complexities and Challenges
Matrix calculus is inherently more complicated than its scalar or vector counterparts. While it is
a subject that can be mastered, it requires understanding nuances that aren’t trivial extensions
of the simpler cases.

1.4.3 Applications
Applications of matrix calculus are varied and impactful. From optimization problems con-
strained by partial differential equations to foundational techniques in machine learning, its
utility spans numerous scientific and engineering disciplines.

As the course progresses, we will explore these mathematical concepts and their real-world
applications, equipping you with the skills needed to solve complex problems using matrix
calculus.

1.5 Introduction to Matrix Calculus Applications and Auto-
matic Differentiation

In contemporary mathematics and computing, buzzwords like machine learning, parameter
optimization, stochastic gradient descent, automatic differentiation, and backpropagation are
ubiquitous. These signify the rapid developments that necessitate an understanding of matrix
calculus. The applications of matrix calculus extend beyond theoretical pursuits to address
physical problems and machine learning statistics.

For instance, consider topology optimization, a procedure used in the design of aircraft
wings. Historically, engineers would select a wing design and iteratively refine it by assessing
aerodynamic performance. Currently, with advancements in computing and machine learn-
ing, it’s possible to computationally optimize for various objectives, such as minimizing fuel
consumption or material use. The computer determines the optimal shape, transforming it
into a significant optimization challenge. This method is also applicable to fluid dynamics
and other domains, facilitating simulations that embed physical models within optimization
loops—a paradigm shift from past methodologies.

Data science and multivariate statistics represent additional areas where these principles are
being actively applied. Here, computer scientists leverage these methods extensively to glean
insights from complex data sets.

1.5.1 Automatic Differentiation: Overview and Implications
Automatic differentiation, or autodiff, represents a noteworthy technological advancement. Un-
derstanding autodiff requires discerning what it is—and, crucially, what it is not. While MIT
attendees are proficient in traditional differentiation methods, automatic differentiation diverges
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from these conventional techniques. It is not numerical differentiation, as seen in numerical anal-
ysis, where ∆y/∆x quantifies small changes. Nor is it akin to symbolic differentiation, available
via tools like Wolfram Alpha or Mathematica.

Instead, autodiff functions more like a compiler technology, applying differentiation rules
algorithmically. This distinguishes it from classical approaches and renders it an intriguing
subject of study, often misleading new learners with its computational intricacies.

Analogous to long division’s educational shift—where understanding the concept is pri-
oritized over manual execution—the pedagogy of calculus may see a transition. Traditional
methods establish foundational understanding, yet the necessity for manual differentiation is
diminishing as computational tools evolve.

This course aims to demonstrate these methodologies, linking classical calculus through
modern computational lenses. By doing so, it paves the way for a nuanced comprehension of
matrix calculus’s role in solving contemporary computational problems.

1.6 Introduction to Modern Optimization and Differentiation
Techniques

In contemporary times, the buzzwords such as machine learning, parameter optimization,
stochastic gradient descent, automatic differentiation, and backpropagation, highlight the inte-
gration of computational methods with matrix calculus. These are crucial in solving complex
optimization problems across various applications.

1.6.1 Applications in Engineering and Data Science
Matrix calculus naturally extends to fields like physical problem-solving and machine learning
statistics. One intriguing application is the topology optimization of aircraft wings. Tradi-
tionally, designing an aircraft wing involved selecting a design and iteratively testing its aero-
dynamics. Today, with advanced computing and machine learning, optimization can focus on
objectives like minimizing fuel or material usage. The computer determines optimal shapes,
converting this task into a significant optimization problem, applicable not only to aircraft
wings but also to fluid dynamics.

Data science and multivariate statistics form another vast area, with computer scientists
leveraging these techniques extensively.

1.6.2 The Role of Automatic Differentiation
Automatic differentiation, or autodiff, represents a fascinating advancement in computational
technology. Unlike traditional numerical differentiation, which involves approximating deriva-
tives by computing differences, or symbolic differentiation as performed by tools like Wolfram
Alpha or Mathematica, autodiff offers a new approach. It’s similar to a compiler technology
rather than a mathematical coursework methodology.

• Numerical Differentiation: Involves the calculation of derivatives through finite dif-
ferences, ∆y/∆x, providing approximations.

• Symbolic Differentiation: Utilizes symbolic manipulation software to derive expres-
sions, unlike autodiff.

• Automatic Differentiation: Focuses on evaluating derivatives accurately and efficiently
by decomposing functions into elementary operations and applying the chain rule system-
atically.
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Many at MIT are proficient in manual differentiation; however, the intrinsic complexity of
modern derivatives suggests that automatic differentiation tools are essential. Indeed, complex
derivatives exceed human computational capabilities, making autodiff an invaluable tool for
dealing with such intricacies.

1.6.3 Educational Implications
The evolution of computational tools also impacts educational methods. Conventional calculus
courses, such as MIT’s 18.01, focus predominantly on symbolic methods (approximately 90%).
While foundational understanding is crucial, the practical application increasingly leans on
computational tools like autodiff.

For effective usage of autodiff, understanding the underlying technology is important, akin
to knowing how an engine works to drive a car efficiently. Knowledge of when to employ forward
or reverse mode differentiation and understanding the significance of vector-Jacobian products
are essential for adept usage.

1.6.4 Linearization and Derivatives
An essential concept in calculus is linearization — approximating nonlinear functions locally
as linear. This viewpoint, while trivial in one dimension, facilitates understanding multivariate
calculus where complex surfaces are approximated by tangent planes (or hyperplanes in higher
dimensions).

For a point (x0, y0) on a curve, the linear approximation or tangent line can be expressed
as:

y − y0 = f ′(x0)(x− x0),

where (∆y/∆x) = f ′(x0). This linear perspective is foundational as we extend understanding to
higher dimensions, emphasizing that calculus abstracts complex shapes as locally flat entities.

1.7 Notations and Linearization
In this discussion, we introduce some important notations. We denote finite perturbations using
the symbol ∆. When considering derivatives, we often encounter expressions like f ′(x)∆x, or,
taking the infinitesimal limit, the familiar notation dy

dx = f ′(x).
The traditional calculus notation dy

dx is often taught with the caveat that it’s not actual divi-
sion. Nevertheless, it is a useful conceptual tool, often depicted as such for ease of understanding
and application in linearization.

1.7.1 Linearization Concept
Linearization involves approximating a nonlinear function with a linear function at a point.
This can be illustrated with the expression:

df = f ′(x) dx

where df is the infinitesimal change in f , f ′(x) is the derivative of f at x, and dx is the
infinitesimal change in x.

In one-dimensional calculus, f ′(x) simplifies to a constant, representing a linear relationship
between the change in x and the change in f . This linearization is fundamental and often serves
as an introduction to the concept of derivatives.

We need to be cautious about dividing by dx, especially when transitioning to vectors
and higher dimensions. In such contexts, division is not straightforward, much like
the non-meaningfulness of dividing vectors by vectors.
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1.7.2 Example: The Square Function
Let’s apply these concepts to a simple example: the function f(x) = x2. Consider the specific
point (3, 9):

- The derivative, f ′(x), is given by:

f ′(x) = 2x

- At x = 3, the derivative is:
f ′(3) = 2× 3 = 6

Hence, when x changes by an infinitesimal amount, the linear approximation of the change
in the function value at x = 3 is described by the equation of the tangent line. If you calculate
this in practice, either by hand or on a computer, it becomes evident how well this linear
approximation works as x approaches 3.

1.8 Finite Perturbations and Linearization
In this section, we delve into various notations used for finite perturbations and the concept
of linearization in calculus. We introduce the notion of finite perturbations using the delta (δ)
notation and link it with familiar concepts such as differentiation.

1.8.1 Notation and Finite Perturbations

The traditional notation dy
dx = f ′(x) is widely recognized, though occasionally misunderstood.

When considering finite changes, we use f ′(x)δx as a representation of changes in the function.
This notation emphasizes that f ′(x) is a linear functional, which in a one-dimensional context
acts as a constant multiplier, linking changes in x to changes in the function f .

For a function y = f(x), the differential df is represented as df = f ′(x)dx. This signifies the
change in the function with respect to changes in x, which is foundational to calculus.

1.8.2 Differentiating the Square Function
As an example, consider the square function, particularly at the point (3, 9). The derivative of
the square function is f ′(x) = 2x. At x = 3, the derivative is 6, meaning a small change δx at
this point results in a change 6δx.

δy = f ′(3)δx = 6δx

If δx is a small increment from 3, the corresponding function value will be close to 9, with
the increment defined by the linear relation above.

1.8.3 Infinitesimals and Practical Computation
In practical computations, dx and dy are often thought of as very small numbers. While the
concept of infinitesimals can be rigorously defined mathematically, for computational purposes,
they are treated as the limits of very small numbers—this is an immensely useful approach in
evaluations and simulations.

1.9 Introduction to Matrix Calculus
With the foundation on scalar calculus laid, we now transition into the realm of matrix calculus.
This involves understanding notation such as the element-wise product in vector and matrix
contexts, and the notion of a trace of a matrix.
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1.9.1 Element-wise Products and Trace
The element-wise product, referred to in some tools as ”broadcasting,” is denoted by a dot,
·, in some languages. This operation is essential for manipulating matrices and vectors in a
point-wise fashion.

The trace of a square matrix is the sum of its diagonal entries. This scalar quantity might
be familiar from linear algebra and plays a role in certain matrix calculations.

1.9.2 Matrix Calculus Queries
An example from the practical point of view is the derivative of a scalar trace function. Given
matrices Y , X, and Θ, the problem might involve computing the gradient of an expression
involving these matrices:

The trace of (Y −XΘ)(Y −XΘ)⊤

The derivative is denoted by:

−2X⊤(Y −XΘ)

Tools like matrixcalculus.org provide computational help in such analysis, allowing experi-
ments with various matrix operations.

In upcoming discussions, we will consider gradients of expressions like x⊤x or x⊤Ax, demon-
strating approaches that are more comprehensive than traditional component-wise analysis.
Here’s an invitation to view matrices holistically as we explore further topics in matrix calcu-
lus.

1.10 Matrix Calculus

1.10.1 Introduction to Derivative Notations
We begin by discussing some notations used in calculus. The notation δ is utilized to indicate
finite perturbations, represented as f ′(x)δx. In cases where we consider infinitesimal limits,
many of you are familiar with the notation for the derivative dy/dx = f ′(x). However, it’s often
debated whether this represents true division. Despite this, it is useful to see df = f ′(x)dx,
noting that f ′ is a linear function, and in one variable, it acts as a constant multiplied by the
change in x to equal the change in f .

1.10.2 Linearization and Practical Computations
Consider the square function at the point (3, 9), with derivative 2x. If x = 3, then 2x = 6.
Adding a small perturbation δx leads to a change f(x + δx) ≈ 9 + 6δx + (higher order term).
Here, δy = 6δx, highlighting the linear relationship as a multiplier of 6. In practical applica-
tions, dx and dy can be thought of as very small numbers, rather than infinitesimals, useful in
computational settings.

1.10.3 Transition to Matrix Calculus
Moving from scalar to matrix calculus, we introduce some notations. Element-wise multiplica-
tion is represented in Julia’s notation as 2 .∗3 = 6, oftenreferredtoasbroadcasting.Also, thetraceofamatrixisthesumofitsdiagonalelements.Theseconceptsarefoundationalasweextendderivativeconceptstomatrices.

Lecture LaTeX (https://lecturelatex.com) 9



Source:
https://www.youtube.com/watch?v=0YqjeqLhDDElist=PLUl4u3cNGP62EaLLH92EV CN4izBKK6OE

1.10.4 A Motivational Problem
Consider a practical matrix calculus problem:

• Let Y be an n×m matrix.

• X is an n× k matrix.

• Θ is a k ×m matrix.

The derivative of the scalar trace(Y−XΘ) with respect to Y can be computed,
exemplifying matrix differentiation. The result is a matrix, −2X⊤(Y −XΘ).

1.10.5 Holistic Approach to Matrix Computations

When dealing with expressions like x⊤x or x⊤Ax, it is common to compute gradients
in a traditional element-wise manner. However, this course invites you to adopt
a holistic perspective, considering vectors and matrices as whole entities rather
than a collection of elements.

1.11 Matrix Calculus and Notation in Derivatives
Consider a matrix as more than just an n×n table, akin to moving beyond understanding
a person merely by their physical components like hands, feet, nose, and mouth.
A matrix should be seen as a holistic object. In this light, matrix calculus can
be performed without necessarily breaking things down to an element-by-element level.

1.11.1 Rethinking Matrix Calculus
Traditionally, in many linear algebra classes, matrix problems are often written
out in scalar terms with indices, covering blackboards with lengthy calculations.
While this method can be reassuring by providing a tangible step-by-step solution,
it is often more elegant and efficient to treat matrices as whole entities using
matrix notation.

1.11.2 Understanding Derivatives: Different Scenarios
1. **Scalar to Scalar Case (Standard Calculus)**: This is the basic single-variable
calculus (commonly taught in courses like 18.01), where the derivative represents
the rate of change of a scalar function with respect to its scalar input.

2. **Scalar to Vector Case**: In simple physics, one might encounter the trajectory
of a point in three-dimensional space as a function of time. Here, time is the scalar
input, and position (a vector) is the output. The derivative with respect to time
yields the velocity vector, which is tangent to the trajectory and indicates the
speed and direction of movement.

3. **Scalar to Matrix Case**: It is also feasible to define a trajectory in matrix
space, where each element of an m×n matrix is a function of time. The derivative
of such a matrix with respect to time would be another matrix, offering a visualization
of change in high-dimensional matrix space.
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1.11.3 Exploring Multivariate Derivatives
1. **Vector to Scalar Case (Gradients)**: In courses like multivariate calculus
(18.02) and areas such as machine learning, one often encounters functions with
many variables as input (vector) and a single output (scalar), often referred to
as the "loss function." The derivative here is the gradient, frequently represented
with the nabla symbol (∇) and is a vector.

The gradient of a function F where the input is a vector x, maintains the same
shape as the input. Thus, if the input is a vector, the gradient is also a vector.
In notation:

If x is a vector, ∇F =
∂F

∂x

2. **Row Vector vs. Column Vector Debate**: There has been discussion about
whether to treat the gradient as a row or column vector. A consensus that has emerged
from such discussions (and practical experience in programming environments like
Julia) is that while input vectors might conventionally be column vectors, the derivative
(F prime) is treated as a row vector.

For a quadratic form example F (x) = xTx, the calculations are:

∇F = 2x

The differential is expressed as:

dF = 2xTdx or F ′(x) = 2xT

This treatment ensures that the derivative aligns as a linear operator, where
multiplying the transpose vector (a row vector) by a small change vector (dx) outputs
a scalar.

This approach to derivatives and matrix calculus emphasizes the utility of maintaining
a holistic consideration of matrices and vectors, rather than breaking them into
components without necessity.

1.12 Holistic Understanding of Matrices and Derivatives
In an early linear algebra class, one might see a matrix as an n×n table. However,
similar to how humans are more than just the sum of their body parts, matrices should
be viewed as holistic objects. There are methods in matrix calculus that avoid descending
to the level of individual elements. Consider this: I walked into classrooms where
professors, using chalk and blackboards, wrote out entire matrices element-wise,
filling the entire board. This practice often omits using matrix notation, opting
instead for scalar notation with abundant indices. While indices can sometimes offer
clarity, there is elegance in transcending that approach.

1.12.1 Types of Derivatives
Let's explore the different cases for taking derivatives.

Scalar Input and Output

Recall your first semester calculus, 18.01, where a scalar input produces a scalar
output. This represents the most basic form of a derivative.
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Vector Outputs in Physics

In simple physics contexts, for instance, the position in three dimensions (a vector)
is a function of time (a scalar). Here, the derivative is a velocity vector, tangent
to the trajectory's curve, with magnitude indicating speed.

Matrix as Function of Time

Though perhaps less common in earlier courses, we can consider a trajectory in matrix
space. An m×n matrix function of time has elements that change over time. Its
derivative, in this context, would be a tangent in this high-dimensional matrix
space.

1.13 Gradients and Machine Learning Applications
In multivariate calculus (18.02) and in machine learning, gradients are key. Consider
functions with many variables (a vector) resulting in a scalar, often called the
loss function in machine learning.

1.13.1 Gradient Notation
For a scalar function F with vector input x, the gradient has the same shape as
the input. This is denoted using the nabla symbol (∇) in LaTeX as \nabla, commonly
written as ∇F or the gradient of F.

1.13.2 Transforming Dimensions
Within this framework, it simplifies to denote gradients as vectors (column vectors)
and derivatives or Jacobians as row vectors. For example, for the function F (x) =
xTx: - The gradient ∇F = 2x. - The total differential dF = 2xTdx. - The derivative
F ′(x) = 2xT.

This maintains consistency, as multiplying a row vector by a column vector results
in a scalar, representing a small change dx in the vector x impacting the scalar
function F.

1.14 Dimensionality in Derivatives
There's a noticeable color coding for derivative dimensionality: - Green indicates
zero-dimensional (scalars on the diagonal). - Blue indicates one-dimensional (vector
and gradient). - Matrix derivatives, highlighted diagonally from northeast to southwest,
such as in machine learning when parameters form an array.

Finally, the Jacobian matrix, a crucial concept often underrepresented, connects
many of these aspects. Some may recall its role in linearization and integrals from
18.02. The Jacobian matches the shape of the inputs, thus reflecting an essential
tool in the broader course of dimensional analysis and matrix derivatives.

1.15 Introduction to Jacobian Matrices and Higher-Order Deriva-
tives

In this segment, we will delve into the concept of Jacobian matrices and their applications,
particularly focusing on the transition from vector inputs to vector outputs. It's
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worth noting that students typically learn about Jacobian matrices through the lens
of multi-dimensional integrations, often only in the context of determining determinants
of Jacobians, which can sometimes lead to misconceptions.

1.15.1 Jacobian Matrices: Vector Inputs and Outputs
Consider a function with a vector input and a vector output. For instance, imagine
a 3-dimensional input function producing an output in either a lower or higher number
of dimensions. If we have n dimensions going into the function and m dimensions
coming out, the derivative of the function is best expressed as an m×n matrix.
Such matrix representations become particularly important as we delve into higher
order arrays, where derivatives extend beyond the constraints of two-dimensional
matrices.

1.15.2 Operator Notation and Small Changes
Let us revisit the basic derivative calculation using operator notation. Consider
the derivative of x3, which is 3x2 dx. This is widely recognized, but it serves as
a reminder that for a small change in x, the corresponding change in the function
will be approximately 3x2× the small change. For example, if x = 7 and the change
dx is 0.01, the change in the function is approximately 3 · 72 · 0.01.

1.15.3 Dot Products and Matrix Derivatives
Next, consider a vector input and a scalar output, where x is a vector and dx is
a small change to that vector. In such cases, the dot product is significant. Recall
that the expression xT y (where y could be another vector) represents a dot product,
multiplying all the corresponding elements and summing the results.

For example, with the function xTx and a small change dx, the change in the function
is represented as a dot product between 2x and dx. Hence, ∆(xTx) = 2xTdx.

1.15.4 Matrix Squaring and Change in Function
As we extend into matrix derivatives, consider squaring a matrix X. The derivative
here is not simply 2X due to non-commutative properties of matrix multiplication.
The change in the square of the matrix due to a small change dX must account for
the non-commutativity. Thus, the change is computed as:

∆(XTX) = XTdX + (dX)TX

This formula captures the necessity to consider both multiplication orders, highlighting
the complex nature of derivatives in matrices. Understanding these concepts is key
to grasping higher-dimensional derivative calculations.

1.16 Advanced Differentiation Techniques with Matrix Func-
tions

In this section, we delve into the understanding of Jacobian matrices, especially
when dealing with vector functions that extend across multiple dimensions. A common
misconception among students is to equate Jacobians directly with their determinants.
However, the Jacobian is much more insightful as it encapsulates derivative information
for vector-valued functions.
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1.16.1 Jacobian Calculation in Multi-Dimensional Spaces
When we transition into multi-dimensional calculus, handling vector inputs and outputs
requires us to represent derivatives as matrices. Consider a vector function where
the input is an n-dimensional vector and the output is an m-dimensional vector.
For such functions, the derivative should be expressed as an M×N matrix, aligning
with the dimensions of the output and input respectively.

Matricial differentiation offers a more consolidated framework compared to treating
derivatives as linear operators. This becomes crucial when expanding into higher
order arrays, where derivatives transcend simple two-dimensional matrices.

1.16.2 Operator Notation and Function Changes
To illustrate the differentiation process, consider the derivative of a simple polynomial:
the derivative of x3 is 3x2 dx. This indicates that a small change in x results in
a corresponding change in the function, calculated as 3x2 times the small change.

For a vector input and scalar output, the derivative could be expressed using
a dot product notation. For example, if x is a vector and dx is its small change,
the derivative is given by the dot product 2x·dx, representing the change in the
squared function xTx.

1.16.3 Matrix Differentiation: Non-commutative Properties
In matrix functions, unlike scalar functions, the commutative property does not
hold. When squaring a matrix, the differential dx does not commute with x. The
proper expression for the change in a matrix square, x2, given a small perturbation
dx, is the linear operator (x · dx+ dx · x). This accounts for both multiplication
directions due to non-commutativity.

To visualize, consider a matrix x with n × n dimension. The function x → x2

involves n2 variables. The derivative would scale up to involve n4 terms, but it's
more efficient to think in terms of linear operators rather than attempting to manage
a massive n2 × n2 matrix.

1.16.4 Numerical Example

Consider the quadratic function f(x) = xTx, which sums the squares of its components.

At point x =

(
3
4

)
, the function evaluates to 25. With a small change dx =

(
0.001
0.002

)
,

applying the calculus formula, the resulting change in f, ∆f, can be precisely
predicted by 2xTdx.

This approach underlines the elegance of calculus in process automation—ensuring
predictions align with numerical calculations.

1.16.5 Practical Demo in Julia
To test our understanding with matrices, consider an arbitrary 3×3 matrix x, initialized
with some integers. Define the differential dx through a random perturbation. Compute
the change dy, both numerically as (x+dx)2−x2, and using the matrix derivative
(x · dx + dx · x). Comparing these methods validates the consistency of our matrix
calculus approach.

While this example was conducted using Julia in a REPL environment, the demonstrated
principles are crucial in both practical computational mathematics and theoretical
explorations.
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1.17 Numerical Derivation and Matrix Derivative Formulas
In this segment, we explore the numerical approach to calculating derivatives, especially
in the context of matrix functions. Let's consider a practical illustration using
a numerical method to better understand the computation of derivatives.

After performing a calculation, we compared the present state of the matrix to
its initial state. This change aids in understanding the derivative numerically.
To demonstrate:

Numerical Derivative = Final State− Initial State

However, this is not the only method. We also discussed a "magic formula" which
provides the derivative of a squared matrix x2 in terms of its differential dx.
Some common misconceptions about this derivative include incorrect assumptions such
as:

2x · dx, or 2 · dx · x

Neither of these expressions correctly represents the derivative. The correct
formula that determines how to approach changes in a squared matrix is:

∆(x2) = x · dx+ dx · x

While this has not yet been derived in detail, it serves as an accurate model
for computing such derivatives. This visual or numerical evidence creates an intuitive
understanding. Personally, viewing this concrete demonstration aids in grasping
the validity of the formula.

The derivation of this approach will be explored further shortly, providing a
deeper mathematical basis for why these computations are valid.

1.18 Numerical Derivation and Product Rule Extensions
In our previous discussion, we explored how to numerically calculate a derivative
by comparing the change in position. We emphasized that certain formulas commonly
thought to be correct, such as 2x dx or 2 dx·x, are incorrect. The correct formula
will be derived in our next sessions, but it is important to understand its application
experimentally even before we reach the complete theoretical framework.

To illustrate, consider computing a derivative for scalars using calculus on
a computer, such as (x+dx)2 for approximating derivatives and arriving at 2x. Assume
x = 3 and dx = 0.001. When compared with the well-known formula from ordinary calculus,
2x× dx, they agree to the correct number of significant digits.

This experimental agreement isn't merely coincidental; it suggests that matrix
calculus extends certain rules we observed in standard calculus. These include the
product rule which many of you learned as d(uv) = udv + v du.

1.18.1 Product Rule for Matrices and Vectors
The product rule holds true in the context of matrices and vectors as well, provided
the dimensions are compatible. For example, the differentiation:

d

dt
(AB) =

dA

dt
B +A

dB

dt
It is important to note, matrices do not commute; thus, the order must be maintained.

If A is on the left in the original formula, it should remain on the left.
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To see this applied, consider xTx. Differentiating, we get:

d(xTx) = d(xT )x+ xTdx

Yet, these terms simplify to 2xTdx. Why can they be combined, violating our order
rule? This is permissible because the result is a scalar, which is commutative:
xTdx = dxTx.

For example, consider vectors x = [1, 2, 3] and dx = 0.001·rand(3). Whether using
xTdx or dxTx, results confirm their equality.

1.18.2 Old and New Derivation Techniques

An old technique to derive ∇f for f(x) = xTx =
∑

x2i involves computing partial
derivatives:

∂f

∂xi
= 2xi implying ∇f = [2x1, . . . , 2xn] = 2x

This manual method is valid but simplified by holistically applying the matrix
rule, sparing us from handling indices. This illustrates both clarity and efficiency
in vector calculus.
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